DeGAN: Data-Enriching GAN for Retrieving Representative Samples from a Trained Classifier
نویسندگان
چکیده
منابع مشابه
Classifier Adaptation with Non-representative Training Data
We propose an adaptive methodology to tune the decision boundaries of a classi er trained on non-representative data to the statistics of the test data to improve accuracy. Speci cally, for machine printed and handprinted digit recognition we demonstrate that adapting the class means alone can provide considerable gains in recognition. On machine-printed digits we adapt to the typeface, on hand...
متن کاملTaxometric Investigation of PTSD: data from two nationally representative samples.
Current psychiatric nosology depicts posttraumatic stress disorder (PTSD) as a discrete diagnostic category. However, only one study has examined the latent structure of PTSD, and this study suggested that PTSD may be more accurately conceptualized as an extreme reaction to traumatic life events rather than a discrete clinical syndrome. To build on the existing literature base, the present rese...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولDrawing Representative Samples from Large Databases
Sampling has been used in areas like selectivity estimation (Hou & Ozsoyoglu, 1991; Haas & Swami, 1992, Jermaine, 2003; Lipton, Naughton & Schnerder, 1990; Wu, Agrawal, & Abbadi, 2001), OLAP (Acharya, Gibbons, & Poosala, 2000), clustering (Agrawal, Gehrke, Gunopulos, & Raghavan, 1998; Palmer & Faloutsos, 2000), and spatial data mining (Xu, Ester, Kriegel, & Sander, 1998). Due to its importance,...
متن کاملApplying Representative Uninorms for Phonetic Classifier Combination
When combining classifiers, we aggregate the output of different machine learning methods, and base our decision on the aggregated probability values instead of the individual ones. In the phoneme classification task of speech recognition, small excerpts of speech need to be identified as one of the pre-defined phonemes; but the probability value assigned to each possible phoneme also hold valu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i04.5709